TS VRAI FAUX feuille 32

Partie A

Restitution organisée de connaissances

Soit Δ une droite de vecteur directeur \overrightarrow{v} et soit P un plan.

On considère deux droites sécantes et contenues dans P: la droite D_1 de vecteur directeur $\overrightarrow{u_1}$ et la droite D_2 de vecteur directeur $\overrightarrow{u_2}$.

Montrer que Δ est orthogonale à toute droite de P si et seulement si Δ est orthogonale à D_1 et à D_2 .

Partie B

Dans l'espace muni d'un repère orthonormé, on considère les trois points

$$A(0; -1; 1)$$
, $B(4; -3; 0)$ et $C(-1; -2; -1)$.

On appelle P le plan passant par A, B et C.

On appelle Δ la droite ayant pour représentation paramétrique $\begin{cases} x = t \\ y = 3t - 1 \\ z = -2t + 8 \end{cases}$

avec t appartenant à \mathbb{R} .

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse et justifier la réponse.

- Affirmation 1 : Δ est orthogonale à toute droite du plan P.
- 2. Affirmation 2 : les droites Δ et (AB) sont coplanaires.
- 3. Affirmation 3: Le plan P a pour équation cartésienne x+3y-2z+5=0.
- **4.** On appelle D la droite passant par l'origine et de vecteur directeur \overrightarrow{u} (11; -1; 4). **Affirmation 4**: La droite D est strictement parallèle au plan d'équation x + 3y 2z + 5 = 0.