TS SUITES feuille 236

Partie A

On considère la fonction f définie par :

$$f(x) = x - \ln(1+x).$$

- **1.** Justifier que la fonction f est définie sur l'intervalle]-1; $+\infty[$.
- **2.** On admet que la fonction f est dérivable sur]-1; $+\infty[$. Déterminer l'expression de sa fonction dérivée f'.
- a. En déduire le sens de variation de la fonction f sur l'intervalle] −1; +∞[.
 - **b.** En déduire le signe de la fonction f sur l'intervalle]-1; $+\infty[$.
- **4. a.** Montrer que, pour tout *x* appartenant à l'intervalle]-1; $+\infty[$, on a:

$$f(x) = \ln\left(\frac{\mathrm{e}^x}{1+x}\right).$$

b. En déduire la limite en $+\infty$ de la fonction f.

Partie B

On considère la suite (u_n) définie par $u_0 = 10$ et, pour tout entier naturel n,

$$u_{n+1} = u_n - \ln(1 + u_n)$$
.

On admet que la suite (u_n) est bien définie.

- Donner la valeur arrondie au millième de u₁.
- En utilisant la question 3. a. de la partie A, démontrer par récurrence que, pour tout entier naturel n, on a u_n ≥ 0.
- 3. Démontrer que la suite (u_n) est décroissante.
- 4. Déduire des questions précédentes que la suite (u_n) converge.
- Déterminer la limite de la suite (u_n).