TS SUITE feuille 234

On considère la suite (u_n) telle que $u_0 = 0$ et pour tout entier naturel n:

$$u_{n+1} = \frac{-u_n - 4}{u_n + 3}$$
.

On admet que u_n est défini pour tout entier naturel n.

- Calculer les valeurs exactes de u₁ et u₂.
- 2. On considère la fonction terme ci-dessous écrite de manière incomplète en langage Python:

On rappelle qu'en langage Python, « i in range (n) » signifie que i varie de 0 à n-1.

Recopier et compléter le cadre ci-dessus de sorte que, pour tout entier naturel n, l'instruction terme (n) renvoie la valeur de u_n .

3. Soit la fonction f définie sur] -3; $+\infty$ [par :

$$f(x) = \frac{-x-4}{x+3}.$$

Ainsi, pour tout entier naturel n, on a $u_{n+1} = f(u_n)$.

Démontrer que la fonction f est strictement croissante sur]-3; $+\infty[$.

4. Démontrer par récurrence que pour tout entier naturel n :

$$-2 < u_{n+1} \le u_n$$
.

- En déduire que la suite (u_n) est convergente.
- **6.** Soit la suite (v_n) définie pour tout entier naturel n par :

$$v_n = \frac{1}{u_n + 2}.$$

- **a.** Donner v_0 .
- **b.** Démontrer que la suite (v_n) est arithmétique de raison 1.
- **c.** En déduire que pour tout entier naturel $n \ge 1$:

$$u_n = \frac{1}{n+0.5} - 2.$$

d. Déterminer la limite de la suite (u_n) .