1. On considère la fonction f définie et dérivable sur]0; $+\infty[$ par :

$$f(x) = x \ln(x) - x + 1.$$

Parmi les quatre expressions suivantes, laquelle est celle de la fonction dérivée de f?

a. ln(x)	b. $\frac{1}{x} - 1$	c. $\ln(x) - 2$	d. $\ln(x) - 1$

2. On considère la fonction g définie sur]0; $+\infty[$ par $g(x) = x^2[1 - \ln(x)].$ Parmi les quatre affirmations suivantes, laquelle est correcte?

a. $\lim_{x\to 0} g(x) = +\infty$	b. $\lim_{x \to 0} g(x) = -\infty$	c. $\lim_{x \to 0} g(x) = 0$	d. La fonction <i>g</i>
x-0	x-0	x-0	n'admet pas de li-
			mite en 0.

3. On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 0,9x^2 - 0,1x$. Le nombre de solutions de l'équation f(x) = 0 sur \mathbb{R} est :

a. 0	b. 1	c. 2	d. 3

4. Si H est une primitive d'une fonction h définie et continue sur \mathbb{R} , et si k est la fonction définie sur \mathbb{R} par k(x) = h(2x), alors, une primitive K de k est définie sur \mathbb{R} par :

a. $K(x) = H(2x)$	b $V(y) = 2H(2y)$	$c V(x) = \frac{1}{2}U(2x)$	dV(y) = 2U(y)
a. $K(x) = H(2x)$	$\mathbf{D}_{\bullet} \ \mathbf{K}(\mathbf{x}) = 2H(2\mathbf{x})$	c. $K(x) = \frac{1}{2}H(2x)$	$\mathbf{d.} \ \ \mathbf{K}(\mathbf{x}) = 2H(\mathbf{x})$

5. L'équation réduite de la tangente au point d'abscisse 1 de la courbe de la fonction f définie sur \mathbb{R} par $f(x) = xe^x$ est :

$\mathbf{a.} y = \mathbf{e}x + \mathbf{e}$	b. $y = 2ex - e$	c. $y = 2ex + e$	d. $y = ex$

6. Les nombres entiers n solutions de l'inéquation (0,2)ⁿ < 0,001 sont tous les nombres entiers n tels que :</p>

_				
I	a. $n \le 4$	b. $n \le 5$	c. $n \geqslant 4$	d. $n \ge 5$