Exercice 2 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

Le plan complexe est rapporté à un repère orthonormal direct $\left(0,\overrightarrow{u},\overrightarrow{v}\right)$. On considère le point A d'affixe 1 et, pour tout θ appartenant à $[0; 2\pi[$, le point M d'affixe $z=\mathrm{e}^{\mathrm{i}\theta}$. On désigne par P le point d'affixe 1+z et par Q le point d'affixe z^2 .

- À partir du point M, donner une construction géométrique du point P et une construction géométrique du point Q. Les points O, A, M, P et Q seront placés sur une même figure.
- 2. Déterminer l'ensemble des points P pour θ appartenant à $[0; 2\pi[$. Tracer cet ensemble sur la figure précédente.
- 3. Soit S le point d'affixe $1 + z + z^2$ où z désigne toujours l'affixe du point M. Construire S, en justifiant la construction.
- 4. Dans le cas où S est différent de O, tracer la droite (OS). Quelle conjecture apparaît, relativement au point M?

Démontrer que le nombre $\frac{1+z+z^2}{z}$ est réel, quel que soit θ appartenant à $[0\,;\,2\pi[.$

Conclure sur la conjecture précédente.