Exercice 1 4 points
Enseignement obligatoire

a. Soit (r_n)_{n∈N} la suite géométrique réelle de premier terme r₀ strictement positif et de raison ²/₃.

Exprimer r_n en fonction de r_0 et de n.

- **b.** Soit $(\theta_n)_{n\in\mathbb{N}}$, la suite arithmétique réelle de premier terme θ_0 appartenant à l'intervalle $\left[0\,;\,\frac{\pi}{2}\right]$ et de raison $\frac{2}{3}\pi$. Exprimer θ_n en fonction de θ_0 et de n.
- **c.** Pour tout entier naturel n, on pose $z_n = r_n (\cos \theta_n + i \sin \theta_n)$. Sachant que z_0 , z_1 et z_2 sont liés par la relation $z_0 z_1 z_2 = 8$, déterminer le module et un argument de z_0 , z_1 et z_2 .
- 2. Dans le plan complexe P muni d'un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, (unité graphique : 4 cm), on appelle M_n le point d'affixe z_n .
 - a. Placer les points M_0 , M_1 , M_2 et M_3 dans le plan P.
 - **b.** Pour tout entier naturel n, calculer $\| \overrightarrow{M_n M_{n+1}} \|$ en fonction de n.
 - c. On pose

$$\ell_n = \sum_{k=0}^n \left\| \overrightarrow{M_k M_{k+1}} \right\|.$$

Calculer ℓ_n en fonction de n et déterminer la limite de ℓ_n quand n tend vers $+\infty$.