EXERCICE 1

 Θ étant un réel de l' intervalle]0; $2\Pi[$, on considère les deux nombres complexes :

 $z = e^{i\theta}$ et $Z = \frac{1+z}{1-z}$ et on note |Z| le module de Z

- 1) Montrer que Z = i cotan $\left(\frac{\theta}{2}\right)$ où cotan $\left(\frac{\theta}{2}\right)$ = $\frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$
- 2) Pour quelle valeur de θ l' argument de Z est-il défini ?

A quoi est-il alors égal ? (on distinguera deux cas suivant les valeurs de θ)

3) à quoi est égal |Z| ?

EXERCICE 2

On considère dans ${\bf C}$ les complexes z_1 et z_2 de module 1 et d'arguments respectifs α et β .

Montrer que $\frac{(z_1+z_2)^2}{z_1z_2}$ est un réel positif ou nul

EXERCICE 3

déterminer le module et un argument de :

$$(i-1)^{29}$$
; $(\sqrt{3}-i)^5$; $(2-2i\sqrt{3})^{78}$; $\frac{1+i}{\sqrt{3}+i}$; $\frac{(\sqrt{3}+i)^{26}}{(1-i\sqrt{3})^{11}}$

EXERCICE 4

Déterminer dans chaque cas , le module et un argument du nombre complexe donné

1) $z = 1 - e^{i\theta}$ avec $\theta \in]0; 2\Pi[$

2) $z = 1 - e^{-i\theta}$ avec $\theta \in]0; 2\Pi[$