Exercice 1

- **1°)** Soit (E) l'équation : $z^2 3\sqrt{3}z + 9 = 0$.
- a) Résoudre dans **C** l'équation (E).(On notera z_1 et z_2 ses solutions avec $Im(z_1) > 0$).
- b) Déterminer la forme trigonométrique de z_1 et de z_2 .
- **2°)** Soit P(x) le polynôme complexe : $P(z) = z^3 3(i + \sqrt{3})z^2 + 9(1 + i\sqrt{3})z 27i$.
- a) Calculer P(i).
- b) Démontrer que l'équation P(z) = 0 admet une unique racine imaginaire pure.
- c) Déterminer les réels a, b et c tels que, pour tout complexe z, $P(z) = (z 3i)(az^2 + bz + c)$.
- d) En déduire toutes les solutions de l'équation : P(z) = 0.
- **3°)** Soient A, B et C les points d'affixes respectives : $z_A = 3i$, $z_B = \frac{3\sqrt{3}}{2} + \frac{3}{2}i$ et $z_C = \overline{z_B}$ dans le plan complexe muni d'un repère orthonormal (O; \vec{u} , \vec{v}) (unité graphique : 2 cm)
- a) Faire une figure.
- b) Calculer $z' = \frac{z_A z_B}{z_C z_B}$ sous forme algébrique.
- c) Déterminer le module et un argument de z'.
- d) En déduire la valeur de l'angle ABC et la nature du triangle ABC.

Christophe navarri

www.maths-paris.com