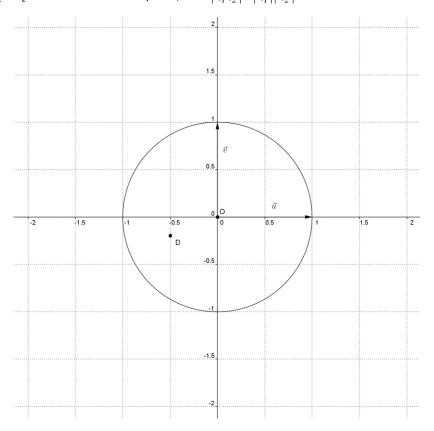
1. Exercice 4 (5 points, non spécialistes)

Partie A : Restitution organisée de connaissances

Soit z un nombre complexe. On rappelle que \bar{z} est le conjugué de z et que |z| est lemodule de z.

On admet l'égalité : $|z|^2 = \overline{zz}$.

Montrer que, si z_1 et z_2 sont deux nombres complexes, alors $|z_1z_2| = |z_1||z_2|$.



Partie B : Étude d'une transformation particulière

Dans le plan complexe rapporté au repère orthonormal direct $(O; \vec{u}, \vec{v})$, on désigne par A et B les points d'affixes respectives 1 et -1.

Soit f la transformation du plan qui à tout point M d'affixe $z \ne 1$, associe le point M' d'affixe z' tel que : $z' = \frac{1-z}{z-1}$.

1. Soit \emph{C} le point d'affixe $z_{C}=-2+i$.

a. Calculer l'affixe z'_C du point C' image de C par la transformation f, et placer les points C et C' dans le repère donné en annexe.

b. Montrer que le point ${\it C}'$ appartient au cercle $\,\Gamma\,$ de centre ${\it O}$ et de rayon 1.

c. Montrer que les points A, C et C' sont alignés.

- 2. Déterminer et représenter sur la figure ci-dessous l'ensemble Δ des points du plan qui ont le point A pour image par la transformation f.
- 3. Montrer que, pour tout point ${\it M}$ distinct de ${\it A}$, le point ${\it M}'$ appartient au cercle $\,\Gamma\,$.
- 4. Montrer que, pour tout nombre complexe $z \neq 1$, $\frac{z'-1}{z-1}$ est réel. Que peut-on en déduire pour les points A, M et M'?
- 5. On a placé un point D sur la figure. Construire son image D' par la transformation f.