On étudie l'évolution dans le temps du nombre de jeunes et d'adultes dans une population d'animaux.

Pour tout entier naturel n, on note j_n le nombre d'animaux jeunes après n années d'observation et a_n le nombre d'animaux adultes après n années d'observation.

Il y a au début de la première année de l'étude, 200 animaux jeunes et 500 animaux adultes.

Ainsi $j_0 = 200$ et $a_0 = 500$.

On admet que pour tout entier naturel n on a :

$$\begin{cases} j_{n+1} = 0,125j_n + 0,525a_n \\ a_{n+1} = 0,625j_n + 0,625a_n \end{cases}$$

On introduit les matrices suivantes :

$$A = \begin{pmatrix} 0,125 & 0,525 \\ 0,625 & 0,625 \end{pmatrix}$$
 et, pour tout entier naturel $n, U_n = \begin{pmatrix} j_n \\ a_n \end{pmatrix}$.

- **1. a.** Montrer que pour tout entier naturel n, $U_{n+1} = A \times U_n$.
 - **b.** Calculer le nombre d'animaux jeunes et d'animaux adultes après un an d'observation puis après deux ans d'observation (résultats arrondis à l'unité près par défaut).
 - **c.** Pour tout entier naturel n non nul, exprimer U_n en fonction de A^n et de U_0 .
- **2.** On introduit les matrices suivantes $Q = \begin{pmatrix} 7 & 3 \\ -5 & 5 \end{pmatrix}$ et $D = \begin{pmatrix} -0.25 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **a.** On admet que la matrice Q est inversible et que $Q^{-1} = \begin{pmatrix} 0, 1 & -0, 06 \\ 0, 1 & 0, 14 \end{pmatrix}$. Montrer que $Q \times D \times Q^{-1} = A$.
 - **b.** Montrer par récurrence sur n que pour tout entier naturel n non nul : $A^n = Q \times D^n \times Q^{-1}$.
 - **c.** Pour tout entier naturel n non nul, déterminer D^n en fonction de n.

3. On admet que pour tout entier naturel n non nul,

$$A^{n} = \begin{pmatrix} 0, 3+0, 7 \times (-0,25)^{n} & 0,42-0,42 \times (-0,25)^{n} \\ 0, 5-0, 5 \times (-0,25)^{n} & 0, 7+0, 3 \times (-0,25)^{n} \end{pmatrix}$$

- **a.** En déduire les expressions de j_n et a_n en fonction de n et déterminer les limites de ces deux suites.
- **b.** Que peut-on en conclure pour la population d'animaux étudiée?