TS MATRICE feuille 21

EXERCICE 1

On considère la matrice $M = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ et on pose $M^0 = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Calculer M2, M3 et M4.

2 En déduire que pour tout entier naturel *n* non nul, $M^{4n} = (-4)^n I_2$.

3 Rappel: pour tout entier naturel n, il existe un unique entier k et un unique entier r ($0 \le r < 4$) tel que n = 4k + r.

Donner, suivant les valeurs de r possibles, l'expression de $M^n = M^{4k+r}$ en fonction de k et M ou M^2 ou M^3 .

EXERCICE 2

Soit A la matrice de $\mathcal{M}_2(\mathbb{R})$ définie par $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et soit $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité de $\mathcal{M}_2(\mathbb{R})$.

11 a. Vérifier que A est la somme de la matrice I_2 et d'une matrice B de $\mathcal{M}_2(\mathbb{R})$ que l'on déterminera.

b. Calculer B^2 et pour tout entier naturel n non nul, B^n .

2 Montrer, par récurrence, que pour tout entier naturel n non nul :

$$\mathbf{A}^n = \mathbf{I}_2 + n\mathbf{B}.$$

3 Vérifier que l'égalité précédente pour n = -1 donne l'expression de la matrice A^{-1} .