TS MATRICE feuille 119

Une ville possède un réseau de vélos en libre service dont deux stations A et B se situent en haut d'une colline. On admet qu'aucun vélo des autres stations n'arrive en direction des stations A et B.

On constate pour chaque heure n qu'en moyenne :

- 20 % des vélos présents à l'heure n − 1 à la station A sont toujours à cette station.
 60 % des vélos présents à l'heure n − 1 à la station A sont à la station B et les autres sont dans d'autres stations du réseau ou en circulation.
- 10 % des vélos présents à l'heure n−1 à la station B sont à la station A, 30 % sont toujours à la station B et les autres sont dans d'autres stations du réseau ou en circulation.
- Au début de la journée, la station A comporte 50 vélos, la station B 60 vélos.

Partie A

Au bout de n heures, on note a_n le nombre moyen de vélos présents à la station A et b_n le nombre moyen de vélos présents à la station B. On note U_n la matrice colonne $\begin{pmatrix} a_n \\ b_n \end{pmatrix}$ et donc $U_0 = \begin{pmatrix} 50 \\ 60 \end{pmatrix}$.

- 1. Déterminer la matrice M telle que $U_{n+1} = M \times U_n$.
- **2.** Déterminer U_1 et U_2 .
- 3. Au bout de combien d'heures reste-t-il un seul vélo dans la station A?

TS MATRICE feuille 118b

Partie B

Le service décide d'étudier les effets d'un approvisionnement des stations A et B consistant à apporter après chaque heure de fonctionnement 30 vélos à la station A et 10 vélos à la station B.

Afin de conduire cette étude, il décide de modéliser la situation présente de la manière suivante :

Au bout de n heures, on note α_n le nombre moyen de vélos présents à la station A et β_n le nombre moyen de vélos présents à la station B. On note V_n la matrice colonne $\begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$ et

$$V_0 = \begin{pmatrix} 50 \\ 60 \end{pmatrix}$$
.

Dans ces conditions $V_{n+1} = M \times V_n + R$ avec $R = \begin{pmatrix} 30 \\ 10 \end{pmatrix}$.

- **1.** On note I la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et N la matrice I M.
 - **a.** On désigne par V une matrice colonne à deux lignes. Montrer que $V = M \times V + R$ équivaut à $N \times V = R$.
 - **b.** On admet que N est une matrice inversible et que $N^{-1} = \begin{pmatrix} 1,4 & 0,2 \\ 1,2 & 1,6 \end{pmatrix}$. En déduire que $V = \begin{pmatrix} 44 \\ 52 \end{pmatrix}$
- 2. Pour tout entier naturel n, on pose $W_n = V_n V$.
 - a. Montrer que $W_{n+1} = M \times W_n$.
 - **b.** On admet que : pour tout entier naturel $n, W_n = M^n \times W_0$,
 pour tout entier naturel $n \ge 1$, $M^n = \frac{1}{2^{n-1}} \begin{pmatrix} 0, 2 & 0, 1 \\ 0, 6 & 0, 3 \end{pmatrix}$.

Calculer, pour tout entier naturel $n \ge 1$, V_n en fonction de n.

c. Le nombre moyen de vélos présents dans les stations A et B a-t-il tendance à se stabiliser?