Partie A

On considère l'algorithme suivant :

A et X sont des nombres entiers Saisir un entier positif A Affecter à X la valeur de A Tant que X supérieur ou égal à 26 Fin du tant que Afficher X

Affecter à X la valeur X - 26

- 1. Qu'affiche cet algorithme quand on saisit le nombre 3?
- 2. Qu'affiche cet algorithme quand on saisit le nombre 55?
- 3. Pour un nombre entier saisi quelconque, que représente le résultat fourni par cet algorithme?

Partie B

On veut coder un bloc de deux lettres selon la procédure suivante (détaillée en quatre étapes) :

 Étape 1 : chaque lettre du bloc est remplacée par un entier en utilisant le tableau ci-dessous :

Α	В	С	D	E	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

On obtient une matrice colonne $(x_1 x_2)$ où x_1 correspond à la première lettre du mot et x_2 correspond à la deuxième lettre du mot.

Étape 2: (x₁ x₂) est transformé en (y₁ y₂) tel que

$$(y_1 \quad y_2) = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} (x_1 \quad x_2)$$

La matrice $C = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ est appelée la matrice de codage.

• Étape 3 : (y₁ y₂) est transformé en (z₁ z₂) tel que

$$\begin{cases} z_1 \equiv y_1 (26) & \operatorname{avec} 0 \leqslant z_1 \leqslant 25 \\ z_2 \equiv y_2 (26) & \operatorname{avec} 0 \leqslant z_2 \leqslant 25 \end{cases}$$

 Étape 3: (z₁ z₂) est transformé en un bloc de deux lettres en utilisant le tableau de correspondance donné dans l'étape 1.

Exemple:
RE
$$\rightarrow \begin{pmatrix} 17 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 55 \\ 93 \end{pmatrix} \rightarrow \begin{pmatrix} 3 \\ 15 \end{pmatrix} \rightarrow DP$$

Le bloc RE est donc codé en DP

Justifier le passage de $\binom{17}{4}$ à $\binom{55}{93}$ puis à $\binom{3}{15}$.

TS MATRICE feuille 109b

- 1. Soient x_1, x_2, x'_1, x'_2 quatre nombres entiers compris entre 0 et 25 tels que $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et $\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix}$ sont transformés lors du procédé de codage en $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$.
 - **a.** Montrer que $\begin{cases} 3x_1 + x_2 & \equiv 3x_1' + x_2' & (26) \\ 5x_1 + 2x_2 & \equiv 5x_1' + 2x_2' & (26). \end{cases}$
 - **b.** En déduire que $x_1 \equiv x_1'$ (26) et $x_2 \equiv x_2'$ (26) puis que $x_1 = x_1'$ et $x_2 = x_2'$.
- 2. On souhaite trouver une méthode de décodage pour le bloc DP :
 - **a.** Vérifier que la matrice $C' = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$ est la matrice inverse de C.
 - **b.** Calculer $(y_1 \quad y_2)$ tels que $(y_1 \quad y_2) = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} (3 \quad 15)$.
 - **c.** Calculer $(x_1 x_2)$ tels que $\begin{cases} x_1 \equiv y_1 & (26) \operatorname{avec} 0 \leqslant x_1 \leqslant 25 \\ x_2 \equiv y_2 & (26) \operatorname{avec} 0 \leqslant x_2 \leqslant 25 \end{cases}$
 - d. Quel procédé général de décodage peut-on conjecturer ?
- 3. Dans cette question nous allons généraliser ce procédé de décodage. On considère un bloc de deux lettres et on appelle z₁ et z₂ les deux entiers compris entre 0 et 25 associés à ces lettres à l'étape 3. On cherche à trouver deux entiers x₁ et x₂ compris entre 0 et 25 qui donnent la matrice colonne (z₁ z₂) par les étapes 2 et 3 du procédé de codage.

Soient
$$y_1'$$
 et y_2' tels que $(y_1' \quad y_2) = C(z_1 \quad z_2)$ où $C' = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$.

Soient x_1 et x_2 , les nombres entiers tels que $\begin{cases} x_1 & \equiv y_1' & (26) \operatorname{avec} 0 \leqslant x_1 \leqslant 25 \\ x_2 & \equiv y_2' & (26) \operatorname{avec} 0 \leqslant x_2 \leqslant 25 \end{cases}$

Montrer que
$$\begin{cases} 3x_1 + x_2 & \equiv z_1 & (26) \\ 5x_1 + 2x_2 & \equiv z_2 & (26). \end{cases}$$

Conclure.

Décoder QC.