On définit les suite (u_n) et (v_n) sur l'ensemble $\mathbb N$ des entiers naturels par :

$$u_0 = 0$$
; $v_0 = 1$, et
$$\begin{cases} u_{n+1} &= \frac{u_n + v_n}{2} \\ v_{n+1} &= \frac{u_n + 2v_n}{3} \end{cases}$$

Le but de cet exercice est d'étudier la convergence des suites (u_n) et (v_n) .

- 1. Calculer u_1 et v_1 .
- 2. On considère l'algorithme suivant :

Variables: u, v et w des nombres réels

N et k des nombres entiers

Initialisation: u prend la valeur 0 v prend la valeur 1

Début de l'algorithme

Entrer la valeur de N

Pour k variant de 1 à N w prend la valeur u u prend la valeur $\frac{w+v}{2}$ v prend la valeur $\frac{w+v}{3}$ Fin du Pour

Afficher uAfficher vFin de l'algorithme

a. On exécute cet algorithme en saisissant N = 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme.

k	w	и	v
1			
2			

- b. Pour un nombre N donné, à quoi correspondent les valeurs affichées par l'algorithme par rapport à la situation étudiée dans cet exercice?
- 3. Pour tout entier naturel n on définit le vecteur colonne X_n par $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ et la matrice

A par A =
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
.

- **a.** Vérifier que, pour tout entier naturel n, $X_{n+1} = AX_n$.
- **b.** Démontrer par récurrence que $X_n = A^n X_0$ pour tout entier naturel n.

TS MATRICE feuille 107b

- **4.** On définit les matrices P, P' et B par P = $\begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix}$, P' = $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$ et B = $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{6} \end{pmatrix}$.
 - **a.** Calculer le produit PP'. On admet que P'BP = A. Démontrer par récurrence que pour tout entier naturel n, $A^n = P'B^nP$.
 - **b.** On admet que pour tout entier naturel n, $B^n = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{6}\right)^n \end{pmatrix}$. En déduire l'expression de la matrice A^n en fonction de n.
- **5. a.** Montrer que $X_n = \left(\frac{\frac{3}{5} \frac{3}{5} \left(\frac{1}{6}\right)^n}{\frac{3}{5} + \frac{2}{5} \left(\frac{1}{6}\right)^n}\right)$ pour tout entier naturel n. En déduire les expressions de u_n et v_n en fonction de n.
 - **b.** Déterminer alors les limites des suites (u_n) et (v_n) .