101. Dans chaque cas, calculer A² et A³ à la main :

1.
$$A = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix}$$
; 2. $A = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$;

2.
$$A = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$$
;

3.
$$A = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$$
; 4. $A = \begin{pmatrix} 0 & 1 \\ -0.5 & 0 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} 0 & 1 \\ -0.5 & 0 \end{pmatrix}.$$

102. Reprendre l'exercice précédent avec :

1.
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$
; 2. $A = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$;

2.
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix};$$

3.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
; 4. $A = \begin{pmatrix} 1/2 & 0 & 2 \\ 0 & 1/5 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

103. Soit k un nombre réel. On pose $A_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$.

- Calculer à la main A_k² et A_k³.
- 2. Démontrer par récurrence que, pour tout $k \in \mathbb{N}$, on a $A_k^n = \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$.

104. On pose $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

- 1. Calculer à la main M^2 et M^3 .
- Démontrer que M⁴ = I₂.
- 3. En déduire l'expression de M" selon les valeurs de l'entier naturel n.

105. On pose $A = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$.

- Calculer A².
- 2. En déduire l'expression de Aⁿ selon les valeurs de l'entier naturel n.