Exercice 1)

On appelle f la fonction définie sur]0; $+\infty[$ par $f(x) = (x+1)\ln x$ -1, et C sa courbe dans le plan muni d'un repère orthonormal d'unité 2cm.

- 1) Etudier les limites de f en 0 et en $+\infty$. En déduire l'existence d'une asymptote à C.
- 2) Calculer la dérivée f' de f, puis la dérivée f'' de f', montrer que $f''(x) = \frac{x-1}{x^2}$. Etudier le signe de f'', calculer f'(1) et en déduire que pour tout x, $f'(x) \ge 2$. Préciser le sens de variation de f.
- 3) Montrer que pour tout $x \ge 1$, $f(x) + 1 \ge 2(x 1)$.
- 4) Montrer que l'équation f(x) = 0 a une unique solution a sur [1; 2]. Donner à la calculatrice un encadrement de a à 10^{-2} près.
- 5) Tracer C.
- 6) a) En remarquant que $\frac{(x+1)^2}{x} = x+2+\frac{1}{x}$, donner une primitive de $\frac{(x+1)^2}{x}$.
 - b) En déduire à l'aide d'une intégration par parties le calcul de $\int\limits_{1}^{a}f(x)dx$.

Exercice 2) (8 points)

- 1) Résoudre dans ☑:
 - a) $\ln(x-1)-2\ln(x-3)=0$.
 - b) $\ln^2 x + \ln x 2 = 0$
 - c) ln(2x-1) < 2
- 2) Résoudre dans $\sqrt[n]{\frac{1}{1000}} \le \frac{3}{4^n} \le \frac{1}{100}$.