ÉTUDE D'UNE FONCTION f ET DE SA COURBE REPRÉSENTATIVE C

On considère la fonction f, définie sur]0; $+\infty[$ par :

$$f(x) = (1 - \frac{1}{x})(\ln x - 2)$$

et on désigne par C sa courbe représentative relativement au repère $(O; \vec{i}, \vec{j})$.

- 1) Déterminer les limites de f en $+\infty$ et 0.
- 2) Montrer que f est dérivable sur]0; $+\infty[$ et calculer f'(x).
- 3) Soit *u* la fonction définie sur]0 ; $+\infty$ [par $u(x) = \ln x + x 3$.
- a) Étudier les variations de *u*.
- b) Montrer que l'équation u(x) = 0 possède une solution unique α dans l'intervalle [2,3].

Montrer que $2,20 < \alpha < 2,21$.

- c) Étudier le signe de u(x) sur $[0; +\infty[$.
- 4) a) Étudier les variations de f.
- b) Exprimer ln α comme polynôme en $\alpha.$

Montrer que :

$$f(\alpha) = -\frac{(\alpha - 1)^2}{\alpha}$$
.

En déduire un encadrement de $f(\alpha)$ d'amplitude 2×10^{-2} .

- 5) a) Étudier le signe de f(x).
- b) Tracer C.