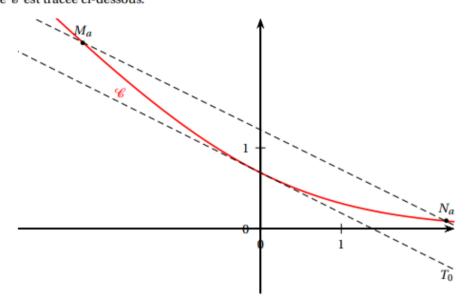
On considère la fonction f définie sur \mathbb{R} par

$$f(x) = \ln\left(1 + e^{-x}\right),\,$$

où ln désigne la fonction logarithme népérien.

On note \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(O; \overrightarrow{\iota}, \overrightarrow{J}\right)$. La courbe \mathscr{C} est tracée ci-dessous.



- a. Déterminer la limite de la fonction f en −∞.
 - **b.** Déterminer la limite de la fonction f en $+\infty$. Interpréter graphiquement ce résultat.
- **c.** On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée. Calculer f'(x) puis montrer que, pour tout nombre réel x, $f'(x) = \frac{-1}{1 + e^x}$.
- **d.** Dresser le tableau de variations complet de la fonction f sur \mathbb{R} .
- 2. On note T_0 la tangente à la courbe \mathscr{C} en son point d'abscisse 0.
 - a. Déterminer une équation de la tangente T₀.
 - b. Montrer que la fonction f est convexe sur ℝ.
 - c. En déduire que, pour tout nombre réel x, on a :

$$f(x) \geqslant -\frac{1}{2}x + \ln(2).$$

Pour tout nombre réel a différent de 0, on note Ma et Na les points de la courbe ℰ d'abscisses respectives −a et a.

On a donc: $M_a(-a; f(-a))$ et $N_a(a; f(a))$.

- **a.** Montrer que, pour tout nombre réel x, on a : f(x) f(-x) = -x.
- **b.** En déduire que les droites T_0 et (M_aN_a) sont parallèles.