EXERCICE 3 (7 points)

Partie A: étude d'une fonction

Soit f la fonction définie sur l'intervalle $[0 ; +\infty[$ par $f(x) = x \ln(x+1)$. Sa courbe représentative (C) dans un repère orthogonal $(O, \overrightarrow{i}, \overrightarrow{j})$ est donnée en annexe, page 6.

- 1. a) Montrer que la fonction f est strictement croissante sur $[0; +\infty[$. b) L'axe des abscisses est-il tangent à la courbe (C) au point O?
- **2.** On pose $I = \int_0^1 \frac{x^2}{x+1} dx$.
 - a) Déterminer trois réels a, b et c tels que, pour tout $x \neq -1$, $\frac{x^2}{x+1} = ax + b + \frac{c}{x+1}$.
 - b) Calculer I.
- 3. A l'aide d'une intégration par parties et du résultat obtenu à la question 2, calculer, en unités d'aires, l'aire A de la partie du plan limitée par la courbe (C) et les droites d'équation x = 0, x = 1 et y = 0.
- 4. Montrer que l'équation f(x)=0,25 admet une seule solution sur l'intervalle $[0\ ;1\].$ On note α cette solution. Donner un encadrement de α d'amplitude $10^{-2}.$

Partie B : étude d'une suite

La suite (u_n) est définie sur \mathbb{N} par $u_n = \int_0^1 x^n \ln(x+1) \ dx$.

- 1. Déterminer le sens de variation de la suite (u_n) . La suite (u_n) converge-t-elle ?
- **2.** Démontrer que pour tout entier naturel n non nul, $0 \le u_n \le \frac{\ln 2}{n+1}$. En déduire la limite de la suite (u_n) .

Annexe

EXERCICE 3

Représentation graphique de la fonction f obtenue à l'aide d'un tableur

courbe (C)

