EXERCICE 2 (5 points)

Commun à tous les candidats

On considère les suites (u_n) et (v_n) définies, pour tout entier naturel n non nul, par :

$$\begin{cases} u_1 = 1 \\ u_n = u_{n-1} + \frac{1}{n} \text{ pour } n \ge 2 \end{cases} \text{ et } v_n = u_n - \ln n \text{ pour } n \ge 1.$$

- 1) a) Calculer u_2 , u_3 et u_4 .
 - **b)** Montrer que, pour tout entier naturel n non nul : $u_n = \sum_{k=1}^n \frac{1}{k}$.
- 2) a) Montrer que, pour tout entier naturel k non nul : $\frac{1}{k+1} \le \int_k^{k+1} \frac{1}{x} dx \le \frac{1}{k}$.

b) En déduire que, pour tout entier naturel supérieur ou égal à 2, on a les inégalités suivantes :

$$u_n - 1 \le \ln n \le u_n - \frac{1}{n}$$
 et $0 \le v_n \le 1$.

- 3) a) Montrer que, pour tout entier naturel n non nul : $v_{n+1} v_n = \frac{1}{n+1} \int_n^{n+1} \frac{1}{x} dx$.
 - **b**) En déduire le sens de variation de la suite (v_n) .
- 4) Montrer que la suite (v_n) converge. On note γ la limite de la suite (v_n) (on ne cherchera pas à calculer γ). Quelle est la limite de la suite (u_n) ?