Soit f la fonction définie sur l'intervalle]0; $+\infty$ [par : $f(x) = x \ln(x^2) - 2x$.

On désigne par C sa courbe représentative dans le plan rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$ (unité graphique : 1 unité pour 0,6 cm sur la figure au verso)

Partie A – Étude de f

- **1°)** Montrer que, pour x > 0, $f(x) = 2x \ln \frac{x}{e}$
- **2°)** a) Étudier la limite de f en $+\infty$.
- b) Montrer que f est dérivable en tout x > 0; calculer f'(x) pour x > 0.
- c) Étudier le sens de variation de f sur]0; + ∞ [.
- d) Donner le tableau de variation de f sur]0; $+\infty$ [.
- 3°) Déterminer par le calcul l'abscisse du point d'intersection de la courbe C avec l'axe des abscisses.
- **4°)** Montrer que l'équation f(x) = 2 admet sur l'intervalle [1; 5] une solution unique et en donner la valeur décimale arrondie à 10^{-2} .

Partie B - Calcul d'aires

1°) Soit F la fonction définie sur l'intervalle [0; $+\infty$ [par :

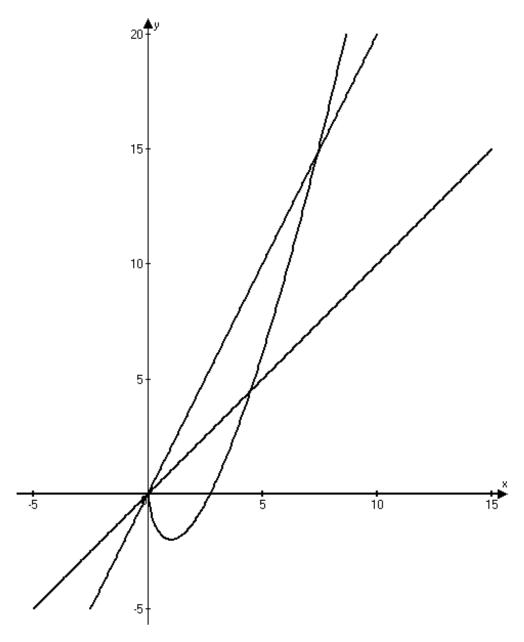
$$\begin{cases} F(0) = 0 \\ F(x) = x^2 \ln x - \frac{3x^2}{2} & \text{si } x > 0 \end{cases}$$

- a) On admet que $\lim_{x\to 0} x \ln x = 0$, montrer que F est dérivable en 0 et préciser F'(0).
- b) Montrer que, pour tout x appartenant à]0; $+\infty$ [, F'(x) = f(x).
- **2°)** On considère pour chaque entier n positif ou nul, la droite D_n d'équation y = nx.

On trouvera au verso un tracé de la courbe C et des droites D_0 , D_1 et D_2 .

- a) Déterminer les coordonnées du point I_n , d'abscisse strictement positive, intersection de C et de D_n .
 - On appelle P_n le point de l'axe des abscisses de même abscisse que I_n .
 - Placer les points I₀, I₁, I₂, P₀, P₁, P₂ sur la figure donnée au verso.
- b) Déterminer la position relative de C et de D_n , pour les abscisses appartenant à $]0; +\infty[$.

3°) Pour tout $n \ge 1$, on considère le domaine A_n situé dans le quart de plan défini par $x \ge 0$ et $y \ge 0$,



délimité par C, D_{n-1} et D_n .

On note a_n son aire, exprimée en unités d'aire.

- a) Faire apparaître les domaines A_1 et A_2 sur la figure.
- b) Calculer l'aire t_n du triangle OP_nI_n , en unités d'aire.
- c) Calculer l'aire u_n , en unités d'aire, du domaine situé dans le quart de plan défini par $x \ge 0$ et $y \ge 0$, délimité par C, l'axe des abscisses, et les parallèles à l'axe des ordonnées passant par C0 et C0.
- d) Vérifier que l'aire v_n , en unités d'aire, du domaine situé dans le quart de plan défini par $x \ge 0$ et $y \ge 0$, délimité par C, l'axe des abscisses et D_n , est $v_n = t_n u_n = \frac{e^2}{2} (e^n 1)$.
- e) Calculer alors a_n .
- **4°)** Montrer que la suite (a_n) est une suite géométrique. En préciser la raison et le premier terme.