1. Exercice 4 (5 points)

On considère la suite (I_n), $n \in \Box$, définie par : $I_n = \int_0^1 \frac{e^{-t^2}}{1+n+t} dt$.

- 1. a. Déterminer le sens de variation de cette suite.
- b. Montrer que (I_n) , est une suite positive.
- c. Montrer que pour tout $t \in [0;1]$ on a $\frac{e^{-t^2}}{1+n+t} \le \frac{1}{1+n}$ et en déduire que $0 \le I_n \le \frac{1}{n+1}$. Que peut-on en conclure quant à la convergence de (I_n) ?
- 2. On considère f et g deux fonctions définies sur [0; 1] par : $f(x) = e^{-x} + x 1$ et $g(x) = 1 x + \frac{x^2}{2} e^{-x}$.
- a. Étudier le sens de variation et le signe de f.
- b. En déduire le sens de variation de g sur [0; 1].
- c. Établir, pour tout x appartenant à [0; 1], l'encadrement : $1-x \le e^{-x} \le 1-x+\frac{x^2}{2}$.
- d. En déduire un encadrement de e^{-t^2} pour tout t appartenant à [0;1].
- e. Établir l'encadrement : $\frac{2}{3(n+2)} \le I_n \le \frac{23}{30(n+1)}$.
- f. Donner une valeur de p telle que $I_p \leq 10^{-2}$.

Christophe navarri

www.maths-paris.com