TS INTEGRALES feuille 116

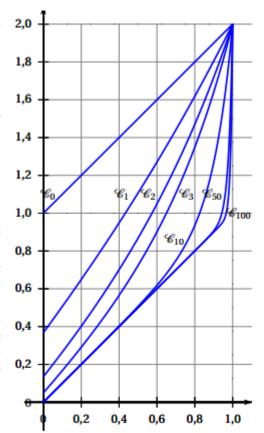
Pour tout entier naturel n, on définit la fonction f_n pour tout réel x de l'intervalle [0; 1] par :

$$f_n(x) = x + e^{n(x-1)}.$$

On note \mathcal{C}_n la représentation graphique de la fonction f_n dans un repère orthogonal. Quelques-unes des courbes \mathcal{C}_n sont représentées ci-contre.

Partie A: généralités sur les fonctions f_n

- Démontrer que, pour tout entier naturel n, la fonction f_n est croissante et positive sur l'intervalle [0; 1].
- Montrer que les courbes \(\mathscr{C}_n\) ont toutes un point commun A, et préciser ses coordonnées.
- 3. À l'aide des représentations graphiques, peut-on conjecturer le comportement des coefficients directeurs des tangentes en A aux courbes «n pour les grandes valeurs de n? Démontrer cette conjecture.



Partie B : évolution de $f_n(x)$ lorsque x est fixé

Soit x un réel fixé de l'intervalle [0; 1]. Pour tout entier naturel n, on pose $u_n = f_n(x)$.

- Dans cette question, on suppose que x = 1. Étudier la limite éventuelle de la suite (u_n).
- **2.** Dans cette question, on suppose que $0 \le x < 1$. Étudier la limite éventuelle de la suite (u_n) .

Partie C: aire sous les courbes \mathcal{C}_n

Pour tout entier naturel n, on note A_n l'aire, exprimée en unité d'aire, du domaine situé entre l'axe des abscisses, la courbe \mathcal{C}_n et les droites d'équations respectives x=0 et x=1. À partir des représentations graphiques, conjecturer la limite de la suite (A_n) lorsque l'entier n tend vers $+\infty$, puis démontrer cette conjecture.