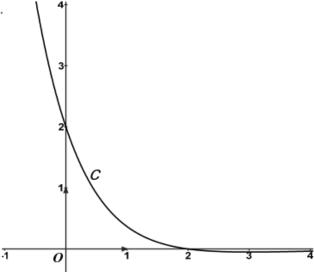
TS INTEGRALES feuille 107

Partie A

La courbe C ci-dessous est la représentation graphique, dans un repère orthonormé, d'une fonction f continue sur \mathbb{R} .

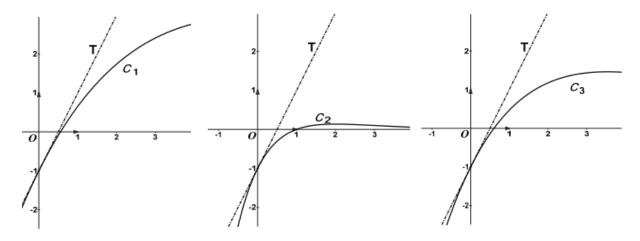


On note F une primitive de la fonction f sur \mathbb{R} .

1°. Déterminer graphiquement les valeurs de F'(0) et de F'(2).

2°. L'une des trois courbes représentées ci-dessous, avec leur tangente T au point d'abscisse 0, est la représentation graphique de la fonction F.

Indiquer laquelle. On expliquera pourquoi on a éliminé les deux autres.



Partie B

On admet que la fonction f introduite à la partie A est définie sur \mathbb{R} par : $f(x) = (2-x)e^{-x}$.

1°. Dans cette question, toute réponse sera justifiée par un calcul.

- a) Déterminer la limite de la fonction f en $-\infty$.
- **b)** Déterminer la limite de la fonction f en $+\infty$.
- c) Déterminer le tableau de variation de la fonction f sur \mathbb{R} .

TS INTEGRALES feuille 107b

2°. On considère l'intégrale I suivante : $I = \int_0^2 f(x) dx$.

a) Interpréter géométriquement le nombre I.

b) Prouver que, pour tout nombre réel x: $f(x) = -e^{-x} - f'(x)$. En déduire l'expression d'une primitive de f sur \mathbb{R} .

c) Déterminer la valeur exacte du nombre I.

Partie C

f et I désignent encore la fonction et l'intégrale définies dans les parties A et B. On considère l'algorithme suivant :

Variables

n, k: entiers naturels

 s_1, s_2, h : nombres réels

Entrées et initialisations

Saisir n

h prend la valeur $\frac{2}{n}$

s₁ prend la valeur 0

s2 prend la valeur 0

Traitement

Pour k variant de 1 à n

 s_1 prend la valeur $s_1 + h \times f((k-1) \times h)$

 s_2 prend la valeur $s_2 + h \times f(k \times h)$

Fin_Pour

Sorties

Afficher s_1

Afficher s_2

On exécute cet algorithme en choisissant n=4. En se référant à une ou plusieurs des trois figures suivantes, indiquer ce que représentent les nombres s_1 et s_2 affichés en sortie. (On ne demande aucune valeur numérique pour s_1 et s_2)

