EXERCICE 3 6 points

Commun à tous les candidats

Étant donné un nombre réel k, on considère la fonction f_k définie sur \mathbb{R} par

$$f_k(x) = \frac{1}{1 + \mathrm{e}^{-kx}}.$$

Le plan est muni d'un repère orthonormé $(0, \vec{\iota}, \vec{\jmath})$.

Partie A

Dans cette partie on choisit k = 1. On a donc, pour tout réel x, $f_1(x) = \frac{1}{1 + e^{-x}}$.

La représentation graphique \mathscr{C}_1 de la fonction f_1 dans le repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$ est donnée en ANNEXE, à rendre avec la copie.

- 1. Déterminer les limites de $f_1(x)$ en $+\infty$ et en $-\infty$ et interpréter graphiquement les résultats obtenus.
- **2.** Démontrer que, pour tout réel x, $f_1(x) = \frac{e^x}{1 + e^x}$.
- **3.** On appelle f'_1 la fonction dérivée de f_1 sur \mathbb{R} . Calculer, pour tout réel x, $f'_1(x)$. En déduire les variations de la fonction f_1 sur \mathbb{R} .
- **4.** On définit le nombre $I = \int_0^1 f_1(x) dx$. Montrer que $I = \ln\left(\frac{1+e}{2}\right)$. Donner une interprétation graphique de I.

Partie B

Dans cette partie, on choisit k = -1 et on souhaite tracer la courbe \mathcal{C}_{-1} représentant la fonction f_{-1} .

Pour tout réel x, on appelle P le point de \mathcal{C}_1 d'abscisse x et M le point de \mathcal{C}_{-1} d'abscisse x.

On note K le milieu du segment [MP].

- 1. Montrer que, pour tout réel x, $f_1(x) + f_{-1}(x) = 1$.
- **2.** En déduire que le point *K* appartient à la droite d'équation $y = \frac{1}{2}$.
- 4. En déduire l'aire, en unités d'aire, du domaine délimité par les courbes \(\mathscr{C}_1\), \(\mathscr{C}_{-1}\) l'axe des ordonnées et la droite d'équation \(x = 1\).


TS INTEGRALES feuille 101b

Partie C

Dans cette partie, on ne privilégie pas de valeur particulière du paramètre k. Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier la réponse.

- Quelle que soit la valeur du nombre réel k, la représentation graphique de la fonction fk est strictement comprise entre les droites d'équations y = 0 et v = 1.
- 2. Quelle que soit la valeur du réel k, la fonction f_k est strictement croissante.
- 3. Pour tout réel $k \ge 10$, $f_k\left(\frac{1}{2}\right) \ge 0,99$.

Représentation graphique \mathcal{C}_1 de la fonction f_1

