Interrogation sur les intégrales

Exercice 1 : (6 points) Calculer les intégrales suivantes :

a)
$$\int_{1}^{2} \frac{1}{x^{2}} + \frac{1}{(1+2x)^{2}} dx$$
 b) $\int_{1}^{2} 2e^{3x} dx$ c) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^{2}x + 1} dx$ d) $\int_{\frac{\pi}{2}}^{e} \frac{\ln x}{x} dx$.

b)
$$\int_{1}^{2} 2e^{3x} dx$$

c)
$$\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 1} dx$$

d)
$$\int_{\frac{1}{c}}^{e} \frac{\ln x}{x} dx$$

e) Calculer à l'aide d'une intégration par parties: $\int_{1}^{e} \frac{\ln x}{x^{2}} dx$.

Exercice 2 (6 points)

- 1. Soit g la fonction définie sur l'intervalle]1; + ∞ [par : $g(x) = \frac{1}{x(x^2 1)}$.
- a. Déterminer les nombres réels a, b et c tels que l'on ait, pour tout x > 1: $g(x) = \frac{a}{y} + \frac{b}{y+1} + \frac{c}{y-1}$.
- b. Trouver une primitive G de g sur l'intervalle]1; $+\infty$ [.
- 2. Soit f la fonction définie sur l'intervalle]1; + ∞ [par : $f(x) = \frac{2x}{(x^2 1)^2}$

Trouver la primitive F de f sur l'intervalle $[1; +\infty]$ telle que F(1) = 1.

3. En utilisant les résultats obtenus précédemment, calculer : $I = \int_{2}^{3} \frac{2x}{(x^2 - 1)^2} \ln x dx$.

On donnera le résultat sous la forme $p \ln 2 + q \ln 3$ avec p et q rationnels.

Exercice 3 (6 points)

On note, pour tout nombre réel a positif et pour tout entier naturel $n: u_n(a) = \int_a^1 x^n \exp(a(1-x)) dx$.

- 1. Calculer $u_0(a)$.
- 2. Montrer que pour tout *n* dans : $0 \le u_n(a) \le \frac{e^a}{n+1}$.
- 3. Montrer que la suite $(u_n(a))$ est décroissante.
- 4. Forme explicite de $u_n(a)$.
- a. A l'aide d'une intégration par parties, trouver une relation de récurrence entre $u_n(a)$ et $u_{n+1}(a)$.
- b. Question facultative : montrer par récurrence sur n que pour tout n dans \mathbb{N} : $u_n(a) = \frac{n!}{a^{n+1}} \left| \exp(a) \sum_{k=0}^{n} \frac{a^k}{k!} \right|$.

Exercice 4: (2 points)

On donne le tableau de variations d'une fonction f définie et dérivable sur °.

On définit la fonction F qui, à tout réel x, associe $F(x) = \int_0^x f(t)dt$

- 1. Quel est le sens de variation de la fonction F?
- 2. Déterminer deux entiers strictement positifs a et b tels que $a \le F(2) \le b$.
- 3. Etudier la limite de F(x) lorsque x tend vers $+\infty$.