On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

et on appelle \mathscr{C}_f sa courbe représentative dans un repère orthonormé.

- 1. On définit la fonction g sur l'intervalle]0; $+\infty[$ par $g(x) = e^{\sqrt{x}}$.
 - **a.** Montrer que g'(x) = f(x) pour tout x de l'intervalle]0; $+\infty[$.
 - **b.** Pour tout réel x de l'intervalle]0; $+\infty[$, calculer f'(x) et montrer que :

$$f'(x) = \frac{e^{\sqrt{x}} \left(\sqrt{x} - 1\right)}{4x\sqrt{x}}.$$

- a. Déterminer la limite de la fonction f en 0.
 - b. Interpréter graphiquement ce résultat.
- a. Déterminer la limite de la fonction f en +∞.
 - **b.** Étudier le sens de variation de la fonction f sur]0; $+\infty[$. Dresser le tableau de variations de la fonction f en y faisant figurer les limites aux bornes de l'intervalle de définition.
 - **c.** Montrer que l'équation f(x) = 2 admet une unique solution sur l'intervalle $[1; +\infty[$ et donner une valeur approchée à 10^{-1} près de cette solution.
- **4.** On pose $I = \int_{1}^{2} f(x) dx$.
 - a. Calculer I.
 - b. Interpréter graphiquement le résultat.
- **5.** On admet que la fonction f est deux fois dérivable sur l'intervalle]0; $+\infty[$ et que :

$$f''(x) = \frac{\mathrm{e}^{\sqrt{x}} \left(x - 3\sqrt{x} + 3\right)}{8x^2 \sqrt{x}}.$$

- **a.** En posant $X = \sqrt{x}$, montrer que $x 3\sqrt{x} + 3 > 0$ pour tout réel x de l'intervalle $[0; +\infty[$.
- **b.** Étudier la convexité de la fonction f sur l'intervalle]0; $+\infty[$.