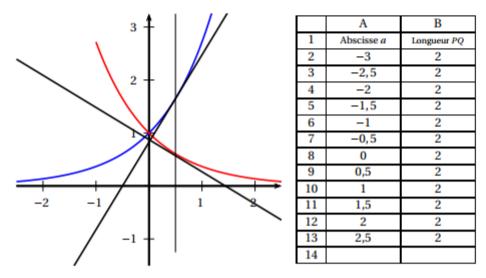
Soient f et g les fonctions définies sur l'ensemble $\mathbb R$ des nombres réels par


$$f(x) = e^x$$
 et $g(x) = e^{-x}$.

On note \mathscr{C}_f la courbe représentative de la fonction f et \mathscr{C}_g celle de la fonction g dans un repère orthonormé du plan.

Pour tout réel a, on note M le point de \mathscr{C}_f d'abscisse a et N le point de \mathscr{C}_g d'abscisse a.

La tangente en M à \mathcal{C}_f coupe l'axe des abscisses en P, la tangente en N à \mathcal{C}_g coupe l'axe des abscisses en Q.

À l'aide d'un logiciel de géométrie dynamique, on a représenté la situation pour différentes valeurs de a et on a relevé dans un tableur la longueur du segment [PQ] pour chacune de ces valeurs de a.

Les questions 1 et 2 peuvent être traitées de manière indépendante.

- 1. Démontrer que la tangente en M à \mathscr{C}_f est perpendiculaire à la tangente en N à \mathscr{C}_g .
- 2. a. Que peut-on conjecturer pour la longueur PQ?
 - b. Démontrer cette conjecture.