
Partie A

Voici deux courbes \mathcal{C}_1 et \mathcal{C}_2 qui donnent pour deux personnes P_1 et P_2 de corpulences différentes la concentration C d'alcool dans le sang (taux d'alcoolémie) en fonction du temps t après ingestion de la même quantité d'alcool. L'instant t=0 correspond au moment où les deux individus ingèrent l'alcool.

C est exprimée en gramme par litre et t en heure.

Définition: La corpulence est le nom scientifique correspondant au volume du corps

 La fonction C est définie sur l'intervalle [0 ; +∞[et on note C' sa fonction dérivée. À un instant t positif ou nul, la vitesse d'apparition d'alcool dans le sang est donnée par C'(t).

À quel instant cette vitesse est-elle maximale?

On dit souvent qu'une personne de faible corpulence subit plus vite les effets de l'alcool.

- Sur le graphique précédent, identifier la courbe correspondant à la personne la plus corpulente. Justifier le choix effectué.
- 3. Une personne à jeûn absorbe de l'alcool. On admet que la concentration C d'alcool dans son sang peut être modélisée par la fonction f définie sur [0; +∞[par

$$f(t) = Ate^{-t}$$

où A est une constante positive qui dépend de la corpulence et de la quantité d'alcool absorbée.

- a. On note f' la fonction dérivée de la fonction f. Déterminer f'(0).
- b. L'affirmation suivante est-elle vraie?
 « À quantité d'alcool absorbée égale, plus A est grand, plus la personne est corpulente. »

Partie B - Un cas particulier

Paul, étudiant de 19 ans de corpulence moyenne et jeune conducteur, boit deux verres de rhum. La concentration C d'alcool dans son sang est modélisée en fonction du temps t, exprimé en heure, par la fonction f définie sur $[0; +\infty[$ par

$$f(t) = 2te^{-t}.$$

- 1. Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.
- 2. À quel instant la concentration d'alcool dans le sang de Paul est-elle maximale? Quelle est alors sa valeur? Arrondir à 10⁻² près.
- 3. Rappeler la limite de $\frac{e^t}{t}$ lorsque t tend vers $+\infty$ et en déduire celle de f(t) en $+\infty$.

Interpréter le résultat dans le contexte de l'exercice.

- 4. Paul veut savoir au bout de combien de temps il peut prendre sa voiture. On rappelle que la législation autorise une concentration maximale d'alcool dans le sang de 0,2 g.L⁻¹ pour un jeune conducteur.
 - a. Démontrer qu'il existe deux nombres réels t₁ et t₂ tels que f (t₁) = f (t₂) = 0,2.
 - b. Quelle durée minimale Paul doit-il attendre avant de pouvoir prendre le volant en toute légalité?

Donner le résultat arrondi à la minute la plus proche.

- La concentration minimale d'alcool détectable dans le sang est estimée à 5 x 10⁻³ g.L⁻¹.
 - a. Justifier qu'il existe un instant T à partir duquel la concentration d'alcool dans le sang n'est plus détectable.
 - **b.** On donne l'algorithme suivant où f est la fonction définie par $f(t) = 2te^{-t}$.

Initialisation : t prend la valeur 3,5 p prend la valeur 0,25 C prend la valeur 0,21 Traitement : Tant que $C > 5 \times 10^{-3}$ faire : $\begin{array}{c} t \text{ prend la valeur } t + p \\ C \text{ prend la valeur } f(t) \\ \text{Fin Tant que} \\ \text{Sortie}: & \text{Afficher } t \end{array}$

Recopier et compléter le tableau de valeurs suivant en exécutant cet algorithme.

Arrondir les valeurs à 10-2 près.

	Initialisation	Étape 1	Étape 2
p	0,25		
t	3,5		
C	0,21		

Que représente la valeur affichée par cet algorithme?