Soit f la fonction définie sur $[0, +\infty[$ par :

$$\begin{cases} f(x) = \frac{x^2 + x + 1}{x^2} e^{-\frac{1}{x}} \text{ pour } x > 0 \\ f(0) = 0. \end{cases}$$

On note \mathscr{C} la courbe représentative de f dans un repère orthonormal $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$ (unité graphique 5 cm).

Partie A

Démontrer que la droite (Δ) d'équation y = 1 est asymptote à C.

2. Pour x > 0, calculer $\frac{f(x) - f(0)}{x}$. Étudier la limite de cette expression quand x tend vers 0. (on pourra utiliser, pour n entier naturel non nul, $\lim_{u \to +\infty} u^n \mathrm{e}^{-u} = 0.$

Que peut-on en déduire pour la fonction f ? Que peut-on en déduire pour la courbe $\mathscr C$?

3. Démontrer que pour tout x de $]0, +\infty[$ on a $f'(x) = \frac{1-x}{x^4}e^{-\frac{1}{x}}$.

4. Étudier les variations de la fonction f et dresser le tableau des variations de f.

Partie B

On note g la fonction définie sur]0; $+\infty$ [par g(x) = f(x) - xf'(x).

1. Montrer que dans]0; $+\infty[$, les équations g(x) = 0 et $x^3 + x^2 + 2x - 1 = 0$ sont équivalentes.

2. Démontrer que l'équation $x^3 + x^2 + 2x - 1 = 0$ admet une seule racine réelle α dont on justifiera un encadrement à 10^{-2} près.

3. On pose $A = \frac{f(\alpha)}{\alpha}$. Encadrer $A \ge 2 \times 10^{-1}$ près (justifier) et montrer que $A = f'(\alpha)$.

4. Pour tout a > 0, on note T_a la tangente à C au point d'abscisse a. Montrer que T_a a pour équation y = Ax. Tracer T_a, puis la courbe C.

5. Déduire des questions précédentes que de toutes les tangentes T_a à \mathscr{C} (en des points d'abscisses non nulles), seule T_a passe par l'origine O.

On admettra que T_α est au-dessus de ℰ sur]0; +∞[.

a. Par lecture graphique (et sans justification), donner le nombre de solutions de l'équation f(x) = m, suivant le réel m donné.

b. Par lecture graphique (et sans justification), donner le nombre de solutions de l'équation f(x) = mx selon le réel m donné.