Le plan est rapporté à un repère orthonormal $(O; \overrightarrow{i}; \overrightarrow{j})$.

On considère les points B (100; 100) et C $\left(50; \frac{50}{\sqrt{e}}\right)$ et la droite (D) d'équation y = x.

On note f la fonction définie sur $\mathbb R$ dont la courbe représentative, notée Γ , est donnée en annexe. On suppose de plus qu'il existe deux réels a et b tels que :

- pour tout x réel, $f(x) = xe^{ax+b}$.
- les points B et C appartiennent à la courbe Γ .
 - 1. (a) Montrer que le couple (a; b) est solution du système :

$$\begin{cases} 100a+b=0\\ 50a+b=-\frac{1}{2} \end{cases}$$

- (b) En déduire que, pour tout x réel, $f(x) = xe^{0.01x-1}$.
- 2. Déterminer la limite de f en $+\infty$.
- 3. (a) Montrer que pour tout x réel, $f(x) = \frac{100}{e} \times 0.01 xe^{0.01x}$
 - (b) En déduire la limite de f en $+\infty$.
- 4. Étudier les variations de la fonction f. On donnera le tableau de variations complet.
- 5. Étudier la position relative de la courbe Γ et de la droite (D).
- 6. (a) Calculer à l'aide d'une intégration par parties l'intégrale $\int_0^{100} f(t) dt$.
 - (b) On désigne par A l'aire, en unités d'aire, du domaine du plan délimité par les droites d'équations x=0 et x=100, la droite (D) et la courbe Γ . Calculer A.

