PROBLEME (10 points) commun à tous les candidats

Soit f la fonction définie sur $[0; +\infty[$ par :

$$f(x) = \frac{x^2 + x + 1}{x^2} e^{-\frac{1}{x}}$$
 pour $x > 0$ et $f(0) = 0$.

On note (C) la courbe représentative de f dans un repère orthonormal (O; \vec{i} , \vec{j}) (unité graphique 5 cm).

Partie A

1. Démontrer que la droite (Δ) d'équation y = 1 est asymptote à (C). (0,5 point)

2. Pour x > 0, calculer $\frac{f(x) - f(0)}{x}$.

Étudier la limite de cette expression quand x tend vers 0 (on pourra utiliser, pour n entier naturel non nul, $\lim_{u\to +\infty} u^n e^{-u} = 0$). (0,5 point)

Que peut-on en déduire pour la fonction *f* ? (0,25 point)

Que peut-on en déduire pour la courbe (C) ? (0,25 point)

3. Démontrer que, pour tout x de] 0; + ∞ [, on a :

$$f'(x) = \frac{1-x}{x^4} e^{-\frac{1}{x}}$$
 (0,5 point)

4. Étudier les variations de la fonction f et dresser le tableau des variations de f.

(1 point)

Partie B

On note g la fonction définie sur]0; + ∞ [par g(x) = f(x) - x f'(x).

Feuille 28

- **1.** Montrer que, dans]0; + ∞ [, les équations g(x) = 0 et $x^3 + x^2 + 2x 1 = 0$ sont équivalentes. (0,5 point)
- **2.** Démontrer que l'équation $x^3 + x^2 + 2x 1 = 0$ admet une seule racine réelle α dont on justifiera un encadrement à 10^{-2} près. (0,75 point)
- **3.** On pose $A = \frac{f(\alpha)}{\alpha}$.

Encadrer A à $(2\times10)^{-1}$ près (justifier) et montrer que A = $f'(\alpha)$. (0,75 point)

4. Pour tout a > 0, on note (T_a) la tangente à (C) au point d'abscisse a.

Montrer que (T_{α}) a pour équation y = Ax. Tracer (T_{α}) , puis la courbe (C). (1 point)

- **5.** Déduire des questions précédentes que de toutes les tangentes (T_a) à (C) (en des points d'abscisses non nulles), seule (T_α) passe par l'origine O. (0,5 point)
- **6.** On admettra (T_{α}) est au-dessus de (C) sur] 0 ; + ∞ [.
- a) Par lecture graphique (et sans justification), donner le nombre de solutions de l'équation f(x) = m, suivant le réel m donné. (0,5 point)
- b) Par lecture graphique (et sans justification), donner le nombre de solutions de l'équation f(x) = mx selon le réel m donné. (0,5 point)