On note \mathbb{R} l'ensemble des nombres réels. L'espace est muni d'un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$. On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

- 1. a. Démontrer que les points A, B et C ne sont pas alignés.
 - **b.** Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - c. En déduire la mesure de l'angle BAC, arrondie au degré.
- **2.** Soit \overrightarrow{n} le vecteur de coordonnées $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$.
 - **a.** Démontrer que \overrightarrow{n} est un vecteur normal au plan (ABC).
 - b. Déterminer une équation cartésienne du plan (ABC).
- 3. Soient \mathcal{P}_1 le plan d'équation 3x + y 2z + 3 = 0 et \mathcal{P}_2 le plan passant par O et parallèle au plan d'équation x 2z + 6 = 0.
 - **a.** Démontrer que le plan \mathcal{P}_2 a pour équation x = 2z.
 - **b.** Démontrer que les plans \mathcal{P}_1 et \mathcal{P}_2 sont sécants.
 - c. Soit la droite D dont un système d'équations paramétriques est

$$\left\{ \begin{array}{lll} x & = & 2t \\ y & = & -4t-3, & t \in \mathbb{R}. \\ z & = & t \end{array} \right.$$

Démontrer que \mathscr{D} est l'intersection des plans \mathscr{P}_1 et \mathscr{P}_2 .

 Démontrer que la droite D coupe le plan (ABC) en un point I dont on déterminera les coordonnées.