
TS ESPACE feuille 119a

Soit un cube ABCDEFGH d'arête 1. Dans le repère $\left(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}\right)$, on considère les points M, N et P de coordonnées respectives $M\left(1;1;\frac{3}{4}\right)$, $N\left(0;\frac{1}{2};1\right)$, $P\left(1;0;-\frac{5}{4}\right)$.

- 1. Placer M, N et P sur la figure donnée en annexe.
- Déterminer les coordonnées des vecteurs MN et MP.
 En déduire que les points M, N et P ne sont pas alignés.
- 3. On considère l'algorithme 1 donné en annexe.
 - a. Exécuter à la main cet algorithme avec les coordonnées des points M, N et P données ci-dessus.
 - b. À quoi correspond le résultat affiché par l'algorithme ? Qu'en déduire pour le triangle MNP?
- 4. On considère l'algorithme 2 donné en annexe. Le compléter pour qu'il teste et affiche si un triangle MNP est rectangle et isocèle en M.
- On considère le vecteur n (5; −8; 4) normal au plan (MNP).
 - a. Déterminer une équation cartésienne du plan (MNP).
 - **b.** On considère la droite Δ passant par F et de vecteur directeur \overrightarrow{n} . Déterminer une représentation paramétrique de la droite Δ .
- **6.** Soit K le point d'intersection du plan (MNP) et de la droite Δ .
 - a. Démontrer que les coordonnées du point K sont $\left(\frac{4}{7}; \frac{24}{35}; \frac{23}{35}\right)$.
 - **b.** On donne FK = $\sqrt{\frac{27}{35}}$. Calculer le volume du tétraèdre MNPF.

TS ESPACE feuille 119b

Algorithme 1

Saisir x_M , y_M , z_M , x_N , y_N , z_N , x_P , y_P , z_P d prend la valeur $x_N - x_M$ e prend la valeur $y_N - y_M$ f prend la valeur $z_N - z_M$ g prend la valeur $x_P - x_M$ h prend la valeur $y_P - y_M$ i prend la valeur $z_P - z_M$ k prend la valeur $d \times g + e \times h + f \times i$ Afficher k

Algorithme 2 (à compléter)

Saisir x_M , y_M , z_M , x_N , y_N , z_N , x_P , y_P , z_P d prend la valeur $x_N - x_M$ e prend la valeur $y_N - y_M$ f prend la valeur $z_N - z_M$ g prend la valeur $x_P - x_M$ h prend la valeur $y_P - y_M$ i prend la valeur $z_P - z_M$ k prend la valeur $d \times d + e \times d + f \times i$