Partie A:

Soit g la fonction définie sur ℝ par :

$$g(x) = 2e^{\frac{-1}{3}x} + \frac{2}{3}x - 2.$$

On admet que la fonction g est dérivable sur R et on note g' sa fonction dérivée.
Montrer que, pour tout réel x :

$$g'(x) = \frac{-2}{3}e^{-\frac{1}{3}x} + \frac{2}{3}$$
.

- En déduire le sens de variations de la fonction g sur R.
- 3. Déterminer le signe de g(x), pour tout x réel.

Partie B:

1. On considère l'équation différentielle

(E):
$$3y' + y = 0$$
.

Résoudre l'équation différentielle (E).

- Déterminer la solution particulière dont la courbe représentative, dans un repère du plan, passe par le point M(0; 2).
- **3.** Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = 2e^{-\frac{1}{3}x}$$

et \mathscr{C}_f sa courbe représentative.

a. Montrer que la tangente (Δ_0) à la courbe \mathscr{C}_f au point M(0; 2) admet une équation de la forme :

$$y = -\frac{2}{3}x + 2$$
.

b. Étudier, sur \mathbb{R} , la position de cette courbe \mathscr{C}_f par rapport à la tangente (Δ_0) .

Partie C:

- 1. Soit A le point de la courbe \mathscr{C}_f d'abscisse a, a réel quelconque. Montrer que la tangente (Δ_a) à la courbe \mathscr{C}_f au point A coupe l'axe des abscisses en un point P d'abscisse a+3.
- **2.** Expliquer la construction de la tangente (Δ_{-2}) à la courbe \mathscr{C}_f au point B d'abscisse -2.