Dans cet exercice, on s'intéresse à la croissance du bambou Moso de taille maximale 20 mètres.

Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l'écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale 1 mètre.

Pour tout entier naturel n, on note u_n la taille, en mètre, du bambou n jours après le début de l'observation. On a ainsi $u_0 = 1$.

Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l'égalité :

$$u_{n+1} = u_n + 0.05 (20 - u_n)$$
 pour tout entier naturel n .

- **1.** Vérifier que $u_1 = 1,95$.
- a. Montrer que pour tout entier naturel n, u_{n+1} = 0,95u_n + 1.
 - **b.** On pose pour tout entier naturel n, $v_n = 20 u_n$. Démontrer que la suite (v_n) est une suite géométrique dont on précisera le terme initial v_0 et la raison.
 - **c.** En déduire que, pour tout entier naturel n, $u_n = 20 19 \times 0,95^n$.
- **3.** Déterminer la limite de la suite (u_n) .

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps *t* exprimé en jour.

D'après le modèle de von Bertalanffy, cette fonction est solution de l'équation différentielle

(E)
$$y' = 0.05(20 - y)$$

où y désigne une fonction de la variable t, définie et dérivable sur $[0; +\infty[$ et y' désigne sa fonction dérivée.

Soit la fonction L définie sur l'intervalle $[0; +\infty[$ par

$$L(t) = 20 - 19e^{-0.05t}$$
.

- Vérifier que la fonction L est une solution de (E) et qu'on a également L(0) = 1.
- **2.** On prend cette fonction L comme modèle et on admet que, si on note L' sa fonction dérivée, L'(t) représente la vitesse de croissance du bambou à l'instant t.
 - **a.** Comparer L'(0) et L'(5).
- **b.** Calculer la limite de la fonction dérivée L' en $+\infty$.

Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l'exercice?