85 Démontrer une inégalité

Ralsonner Calculer

Démontrer que pour tout réel x de l'intervalle [0; 1], $e^x \le 1 + x(e - 1)$.

88 Imaginer une stratégie

Raisonner Calculer

Pour tout entier naturel non nul n, f_n est la fonction définie sur \mathbb{R} par :

$$f_n(x) = 10x^2 e^{nx-1}$$
.

On note \mathscr{C}_n la courbe représentative de la fonction f_n dans un repère.

Montrer que \mathscr{C}_n admet deux points d'inflexion dont on donnera les abscisses.

102 Des fonctions polynômes

1. Polynômes de degré 3

P est une fonction définie sur ℝ par :

$$P(x) = ax^3 + bx^2 + cx + d$$

où a, b, c, d sont des nombres réels avec $a \neq 0$.

Étudier la convexité de la fonction P.

Conseil: envisager deux cas, a > 0 et a < 0.

2. Polynômes de degré 4

f est une fonction définie sur $\mathbb R$ par :

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

où a, b, c, d et e sont des nombres réels avec a > 0.

a) Démontrer que la fonction f n'est jamais concave sur \mathbb{R} .

Conseil: utiliser un raisonnement par l'absurde.

- **b)** Déterminer une condition nécessaire et suffisante sur a, b, c pour que f soit convexe sur \mathbb{R} .
- **c)** Montrer que si f n'est pas convexe sur \mathbb{R} , alors sa courbe admet deux points d'inflexion.

Préciser les abscisses de ces points d'inflexion.