On rappelle la définition de la convergence d'une suite :

La suite (u_n) converge vers I ssi $\forall \ \epsilon > 0$, $\exists \ n_0 \in \mathbf{N}$ tel que

$$n \ge n_0 \Rightarrow |u_n - l| \le \varepsilon$$

EXERCICE 1

Soit (u_n) une suite d'entiers naturels $\,$ qui converge , montrer que la suite (u_n)

Est stationnaire à partir d'un certain rang

EXERCICE 2

Soit a < b et les suites (u_n) et (v_n) définies par :

$$u_0 = a$$
 $v_0 = b$ $u_{n+1} = \frac{u_n + v_n}{2}$ $v_{n+1} = \sqrt{u_{n+1} v_n}$

Montrer que les suites convergent vers une limite commune et exprimer cette

Limite à l' aide de l' unique réel $\alpha \in \left]0; \frac{\pi}{2}\right[$ [tel que $\cos \alpha = \frac{a}{b}$

EXERCICE 3

Pour tout entier n strictement positif, on considère le polynôme :

$$P_n(x) = x^n + x^{n-1} + \dots + x - 1$$

- 1) Montrer que le polynôme P_n admet une unique racine positive $\, lpha_n \,$
- 2) Montrer que \forall $n \in \textbf{\textit{N}}^* \quad P_n(\alpha_{n+1}) < 0 \quad \text{, } En déduire le sens de variation de la$

Suite ($lpha_n$) et démontrer qu'elle converge

3) Simplifier l'expression de $P_n(x)$ pour $x \neq 1$ et en déduire la limite de la suite (α_n)