Partie A

On considère l'algorithme suivant : les variables sont le réel U et les entiers naturels k et N.

Entrée	Saisir le nombre entier naturel non nul N
Traitement	Affecter à U la valeur 0
	Pour k allant de 0 à N -1
	Affecter à U la valeur 3U - 2k + 3
	Fin pour
Sortie	Afficher U

Quel est l'affichage en sortie lorsque N = 3?

Partie B

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 2n + 3$.

- 1. Calculer u_1 et u_2 .
- 2. a. Démontrer par récurrence que, pour tout entier naturel n, $u_n \ge n$.
- b. En déduire la limite de la suite (u_n) .
- 3. Démontrer que la suite (u_n) est croissante.
- 4. Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n + n + 1$.
- a. Démontrer que la suite (v_n) est une suite géométrique.
- b. En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- 5. Soit *p* un entier naturel non nul.
- a. Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$, $u_n \ge 10^p$?
- b. On s'intéresse maintenant au plus petit entier n_0 .

Justifier que $n_0 \le 3p$.

- c. Déterminer à l'aide de la calculatrice cet entier n_0 pour la valeur p = 3.
- d. Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on ait $u_n \ge 10^p$.