Partie A

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$f(x) = 5\ln(x+3) - x.$$

- a. On appelle f' la fonction dérivée de la fonction f sur [0; +∞[. Calculer f'(x) et étudier son signe sur [0; +∞[.
 - **b.** Donner, dans un tableau, les variations de f sur l'intervalle $[0; +\infty[$.
 - c. Montrer que, pour tout x strictement positif on a

$$f(x) = x \left(5 \frac{\ln x}{x} - 1 \right) + 5 \ln \left(1 + \frac{3}{x} \right).$$

- **d.** En déduire la limite de f en $+\infty$.
- **e.** Compléter le tableau de variation de f sur l'intervalle $[0; +\infty[$.
- a. Montrer que l'équation f(x) = 0 admet une unique solution dans l'intervalle [0; +∞[. On notera α cette solution.
 - **b.** Après avoir vérifié que α appartient à l'intervalle [14; 15], donner une valeur approchée de α à 10^{-2} près.
 - c. En déduire le signe de f sur l'intervalle $[0; +\infty[$.

Partie B

Soit (u_n) la suite définie par

$$\begin{cases} u_0 = 4 \\ u_{n+1} = 5\ln(u_n + 3) \text{ pour tout entier naturel } n \neq 0 \end{cases}$$

On considère la fonction g définie sur l'intervalle $[0; +\infty[$ par

$$g(x) = 5\ln(x+3).$$

- a. Étudier le sens de variations de la fonction g sur l'intervalle [0; +∞[.
 - **b.** Vérifier que $g(\alpha) = \alpha$ où α est défini dans la partie A question 2. a.
 - c. Démontrer par récurrence que, pour tout entier naturel n, on a 0 ≤ u_n ≤ α.

Démontrer que la suite u est croissante

- e. En utilisant la question 2. a. de la partie A, justifier que $\lim_{n\to+\infty}u_n=\alpha$.
- 3. On considère l'algorithme suivant :

u prend la valeur 4
Répéter Tant que u-14, 2 < 0 u prend la valeur de $5\ln(u+3)$ Fin du Tant que
Afficher u

- a. Dans cette question toute trace de recherche, même incomplète ou d'initiative, même infructueuse, sera prise en compte dans l'évaluation.
 Justifier que cet algorithme se termine.
- b. Donner la valeur que cet algorithme affiche (on arrondira à 5 décimales).