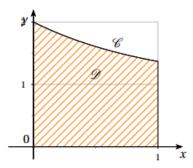
On considère la fonction g définie pour tout réel x de l'intervalle [0; 1] par :

$$g(x) = 1 + e^{-x}.$$

On admet que, pour tout réel x de l'intervalle [0; 1], g(x) > 0.

On note \mathscr{C} la courbe représentative de la fonction g dans un repère orthogonal, et \mathscr{D} le domaine plan compris d'une part entre l'axe des abscisses et la courbe \mathscr{C} , d'autre part entre les droites d'équation x=0 et x=1.

La courbe $\mathscr C$ et le domaine $\mathscr D$ sont représentés ci-contre.



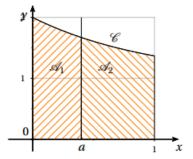
Le but de cet exercice est de partager le domaine \mathcal{D} en deux domaines de même aire, d'abord par une droite parallèle à l'axe des ordonnées (partie A), puis par une droite parallèle à l'axe des abscisses (partie B).

Partie A

Soit a un réel tel que $0 \le a \le 1$.

On note \mathscr{A}_1 l'aire du domaine compris entre la courbe \mathscr{C} , l'axe (Ox), les droites d'équation x=0 et x=a, puis \mathscr{A}_2 celle du domaine compris entre la courbe \mathscr{C} , (Ox) et les droites d'équation x=a et x=1.

 \mathcal{A}_1 et \mathcal{A}_2 sont exprimées en unités d'aire.



- 1. (a) Démontrer que $\mathcal{A}_1 = a e^{-a} + 1$.
 - (b) Exprimer \mathcal{A}_2 en fonction de a.
- 2. Soit f la fonction définie pour tout réel x de l'intervalle [0; 1] par :

$$f(x) = 2x - 2e^{-x} + \frac{1}{e}$$

- (a) Dresser le tableau de variation de la fonction f sur l'intervalle [0; 1]. On précisera les valeurs exactes de f(0) et f(1).
- (b) Démontrer que la fonction f s'annule une fois et une seule sur l'intervalle [0;1]. en un réel α . Donner la valeur de α arrondie au centième.
- 3. En utilisant les questions précédentes, déterminer une valeur approchée du réel a pour lequel les aires \mathcal{A}_1 et \mathcal{A}_2 sont égales.

Partie B

Soit b un réel positif.

Dans cette partie, on se propose de partager le domaine \mathcal{D} en deux domaines de même aire par la droite d'équation y = b. On admet qu'il existe un unique réel b positif solution.

- 1. Justifier l'inégalité $b < 1 + \frac{1}{e}$. On pourra utiliser un argument graphique.
- 2. Déterminer la valeur exacte du réel b.