On considère la suite (u_n) définie par : $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{4u_n}{u_n + 4}.$$

1.

La copie d'écran ci-contre présente les valeurs, calculées à l'aide d'un tableur, des termes de la suite (u_n) pour n variant de 0 à 12, ainsi que celles du quotient $\frac{4}{u_n}$, (avec, pour les valeurs de u_n , affichage de deux chiffres pour les parties décimales).

À l'aide de ces valeurs, conjecturer l'expression de $\frac{4}{u_n}$ en fonction de n.

Le but de cet exercice est de démontrer cette conjecture (question 5.), et d'en déduire la limite de la suite (u_n) (question 6.).

n	u_n	$\frac{4}{u_n}$
0	1,00	4
1	0,80	5
2	0,67	6
3	0,57	7
4	0,50	8
5	0,44	9
6	0,40	10
7	0,36	11
8	0,33	12
9	0,31	13
10	0,29	14
11	0,27	15
12	0,25	16

- **2.** Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n > 0$.
- Démontrer que la suite (u_n) est décroissante.
- **4.** Que peut-on conclure des questions **2.** et **3.** concernant la suite (u_n) ?
- **5.** On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = \frac{4}{u_n}$. Démontrer que (v_n) est une suite arithmétique.

Préciser sa raison et son premier terme.

En déduire, pour tout entier naturel n, l'expression de v_n en fonction de n.

6. Déterminer, pour tout entier naturel n, l'expression de u_n en fonction de n. En déduire la limite de la suite (u_n) .