On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$\begin{cases} u_0 = v_0 = 1 \\ u_{n+1} = u_n + v_n \\ v_{n+1} = 2u_n + v_n \end{cases}$$

Dans toute la suite de l'exercice, on **admet** que les suites (u_n) et (v_n) **sont strictement positives**.

- 1. a. Calculez u_1 et v_1 .
 - **b.** Démontrer que la suite (v_n) est strictement croissante, puis en déduire que, pour tout entier naturel $n, v_n \ge 1$.
 - **c.** Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n \ge n+1$.
 - **d.** En déduire la limite de la suite (u_n) .
- 2. On pose, pour tout entier naturel n:

$$r_n = \frac{v_n}{u_n}$$
.

On admet que:

$$r_n^2 = 2 + \frac{(-1)^{n+1}}{u_n^2}$$

a. Démontrer que pour tout entier naturel n:

$$-\frac{1}{u_n^2} \leqslant \frac{(-1)^{n+1}}{u_n^2} \leqslant \frac{1}{u_n^2}$$
.

b. En déduire :

$$\lim_{n\to+\infty}\frac{(-1)^{n+1}}{u_n^2}.$$

TS SUITES feuille 201b

- **c.** Déterminer la limite de la suite $\binom{r^2}{n}$ et en déduire que (r_n) converge vers $\sqrt{2}$.
- d. Démontrer que pour tout entier naturel n,

$$r_{n+1}=\frac{2+r_n}{1+r_n}.$$

e. On considère le programme suivant écrit en langage Python :

```
def seuil():
n = 0
r = 1
while abs(r-sqrt(2)) > 10**(-4):
r = (2+r)/(1+r)
n = n+1
return n
```

(abs désigne la valeur absolue, sqrt la racine carrée et 10^{**} (-4) représente 10^{-4}). La valeur de n renvoyée par ce programme est 5. À quoi correspond-elle?