TS FONCTIONS feuille 43

Le plan est rapporté à un repère orthonormal (O; \vec{i} , \vec{j}). Soit f la fonction définie sur \mathbf{R} par : $f(x) = (x^3 - 1)\sqrt{x^2 + 1}$.

- 1°) Faire apparaître sur l'écran de la calculatrice graphique la courbe représentative de cette fonction dans la fenêtre $-5 \le x \le 5$, $-4 \le y \le 4$. Reproduire l'allure de la courbe obtenue sur la copie.
- 2°) Déterminer les limites de f en -∞ et en +∞.
- 3°) On se propose maintenant d'étudier plus précisément la fonction f.
 - a) Déterminer la fonction dérivée f' de la fonction f et en déduire que le signe de f'(x) est le même que celui de $P(x) = 4x^4 + 3x^2 x$.
 - b) Soit $Q(x) = 4x^3 + 3x 1$, étudier les variations de Q sur \mathbf{R} et démontrer que l'équation Q(x) = 0 admet une unique solution α sur \mathbf{R} dont on donnera une valeur approchée à 10^{-3} près.
 - c) En déduire le signe de Q(x) puis le signe de f'(x).
 - d) Dresser le tableau de variations de f sur R.
- **4°)** On veut représenter sur l'écran de la calculatrice les informations trouvées dans le 3°), quels intervalles choisir pour la fenêtre de la calculatrice ? On donnera un intervalle d'amplitude 0,5 en abscisse et d'amplitude 0,02 en ordonnée.