
EXERCICE 2 (5 points)

PARTIE A: Observation d'une suite de nombres

- 1. On donne ci-dessus la représentation graphique des 16 premiers termes d'une suite (u_n) dans le plan muni d'un repère orthogonal. Conjecturer la limite de la suite (u_n) .
- 2. Les quatre premiers termes de la suite (u_n) ont été calculés avec un tableur :

n	0	1	2	3
u _n	161	104,6	70,76	50,456

La suite (u_n) peut-elle être une suite géométrique ? On justifiera la réponse donnée.

PARTIE B : Étude de la suite

La suite (u_n) observée dans la partie A est définie pour tout entier naturel n par $u_{n+1} = 0, 6u_n + 8$ et $u_0 = 161$.

- 1. Calculer u_4 .
- 2. Soit (v_n) la suite définie pour tout entier naturel n par $v_n = u_n 20$. Montrer que (v_n) est une suite géométrique. On précisera le premier terme et la raison.
- 3. Donner l'expression de v_n en fonction de n, puis l'expression de u_n en fonction de n.
- 4. Déterminer la limite de la suite (v_n) et en déduire celle de la suite (u_n) .