Un infographiste simule sur ordinateur la croissance d'un bambou. Il prend pour modèle un bambou d'une taille initiale de 1 m dont la taille augmente d'un mois sur l'autre de 5 % auxquels s'ajoutent 20 cm.

Pour tout entier naturel n non nul, on note u_n la taille, exprimée en centimètre, qu'aurait le bambou à la fin du n-ième mois, et $u_0 = 100$.

- Calculer u₁ et u₂.
- **2.** Expliquer pourquoi, pour tout entier naturel n, $u_{n+1} = 1,05 \times u_n + 20$.
- **3.** Pour tout entier naturel n, on pose : $v_n = u_n + 400$.
 - a. Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison et le premier terme v₀.
 - **b.** Pour tout entier naturel n, exprimer v_n en fonction de n.
 - **c.** En déduire que pour tout entier naturel n, $u_n = 500 \times 1,05^n 400$.
 - d. Calculer la taille du bambou, au centimètre près, à la fin du 7e mois.
- On considère l'algorithme ci-dessous dans lequel n est un entier naturel et u est un nombre réel.

$$u \leftarrow 100$$

 $n \leftarrow 0$
Tant que $u < 200$ faire

$$u \leftarrow 1,05 \times u + 20$$

$$n \leftarrow n + 1$$

Fin Tant que

a. Recopier et compléter le tableau ci-dessous en ajoutant autant de colonnes que nécessaire pour retranscrire l'exécution de l'algorithme.

Test $u < 200$		vrai	
Valeur de u	100		:
Valeur de n	0		

- b. Quelle est la valeur de la variable n à la fin de l'exécution de l'algorithme? Interpréter le résultat au regard de la situation étudiée dans cet exercice.
- c. Modifier les lignes nécessaires dans l'algorithme pour déterminer le nombre de mois qu'il faudrait à un bambou de 50 cm pour atteindre ou dépasser 10 m.