TES SUITES feuille 4

EXERCICE 2 (5 points)

Lors de sa création au l^{er} janvier 2000, un club de sport a 300 adhérents. À la fin de la première année, trois quarts des adhérents se réinscrivent et 120 nouveaux membres adhèrent.

Pour tout nombre entier naturel n, on appelle a_n le nombre d'adhérents du club, exprimé en centaines, n années après la création du club.

On a donc $a_0 = 3$.

On suppose que le nombre d'adhérents au club évolue de la même façon les années suivantes. Ainsi, pour tout nombre entier naturel n, $a_{n+1} = 0.75a_n + 1.2$.

PARTIE A : Étude graphique de la suite $(a_n)_{n\in \mathbb{N}}$.

Dans le repère donné en ANNEXE 2, à rendre avec la copie, on a représenté la droite D d'équation y = 0, 75x + 1, 2 et la droite Δ d'équation y = x pour les abscisses comprises entre 0 et 6.

- 1) Placer a_0 sur l'axe des abscisses et, en utilisant les droites D et Δ , placer sur l'axe des abscisses les valeurs a_1 , a_2 , a_3 , a_4 (laisser apparents les traits de construction).
- 2) Quelle semble être la limite de la suite $(a_n)_{n=1}$?

PARTIE B : Étude numérique de la suite $(a_n)_{n\in\mathbb{N}}$

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=a_n-4.8$ pour tout nombre entier naturel n.

- 1) a. Calculer u_0 .
 - b. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison 0,75.
 - c. En déduire que, pour tout nombre entier naturel n, $a_n = 4.8 1.8 \times (0.75)^n$.
 - d. Déterminer $\lim_{n\to +\infty} a_n$.
- 2) Si l'évolution du nombre d'adhérents se poursuit selon ce modèle, le club peut-il avoir 500 adhérents durant une année ? Pourquoi ?

ANNEXE 2

