TES SUITES feuille 35

La suite (u_n) est définie pour tout nombre entier naturel n par :

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{1}{2}u_n + 1 \end{cases}$$

Partie A

 On souhaite écrire un algorithme affichant, pour un entier naturel n non nul donné, tous les termes de la suite, du rang 0 au rang n.

Parmi les trois algorithmes suivants, un seul convient.

Indiquer lequel et justifier pourquoi les deux autres ne peuvent donner le résultat attendu.

Variables :	Variables:	Variables:							
U est un nombre réel	U est un nombre réel	U est un nombre réel							
i et N sont des nombres entiers	i et N sont des nombres entiers	i et N sont des nombres entiers							
Début	Début	Début							
Saisir une valeur pour N	Saisir une valeur pour N	Saisir une valeur pour N							
U prend la valeur 5	Pour i de 0 à N faire	U prend la valeur 5							
Pour i de 0 à N faire	U prend la valeur 5	Pour i de 0 à N faire							
Affecter à U la valeur $\frac{1}{2} \times U + 1$	Afficher U	Afficher U							
Fin Pour	Affecter à U la valeur $\frac{1}{2} \times U + 1$	Affecter à U la valeur $\frac{1}{2} \times U + 1$							
Afficher U	Fin Pour	Fin Pour							
Fin	Fin	Fin							
algorithme 1 algorithme 2 algorithme 3									

lgorithme 1 algorithme 2 algorithme

2. On saisit la valeur 9 pour N, l'affichage est le suivant :

5	3,5	2,75	2,375	2,185	2,0938	2,0469	2,0234	2,0117	2,0059
---	-----	------	-------	-------	--------	--------	--------	--------	--------

Quelle conjecture peut-on émettre sur le sens de variation de cette suite?

Partie B

On introduit une suite auxiliaire (v_n) définie, pour tout entier naturel n, par $v_n = u_n - 2$.

- Montrer que (v_n) est une suite géométrique. Préciser sa raison q et son premier terme v₀.
- **2.** Montrer que, pour tout nombre entier naturel n, on a $u_n = 2 + 3\left(\frac{1}{2}\right)^n$.
- 3. Étudier les variations de la suite (u_n) .
- 4. Déterminer la limite de la suite (u_n) .
- 5. À partir de quel rang a-t-on : $u_n 2 \le 10^{-6}$?