TES SUITES feuille 32

La médiathèque d'une petite ville a ouvert ses portes le 2 janvier 2013 et a enregistré 2500 inscriptions en 2013.

Elle estime que, chaque année, 80 % des anciens inscrits renouvelleront leur inscription l'année suivante et qu'il y aura 400 nouveaux adhérents.

On modélise cette situation par une suite numérique (a_n) .

On note a_0 = 2500 le nombre d'inscrits à la médiathèque en 2013 et a_n représente le nombre d'inscrits à la médiathèque pendant l'année 2013 + n.

- a. Calculer a₁ et a₂.
 - **b.** Justifier que, pour tout entier naturel n, on a la relation $a_{n+1} = 0.8 \times a_n + 400$.
- 2. On pose, pour tout entier naturel n, $v_n = a_n 2000$.
 - a. Démontrer que la suite (ν_n) est une suite géométrique de premier terme ν₀ = 500 et de raison q = 0,8.
 - b. En déduire que le terme général de la suite (a_n) est a_n = 500 × 0,8ⁿ + 2000.
 - c. Calculer la limite de la suite (a_n) .
 - d. Que peut-on en déduire pour le nombre d'adhérents à la médiathèque si le schéma d'inscription reste le même au cours des années à venir?
- 3. On propose l'algorithme suivant :

Variables: N entier,

A réel.

Initialisation: N prend la valeur 0

A prend la valeur 2500

Traitement: Tant que A - 2000 > 50

A prend la valeur $A \times 0, 8 + 400$

N prend la valeur N+1

Fin du Tant que

Sortie: Afficher N.

- a. Expliquer ce que permet de calculer cet algorithme.
- b. À l'aide de la calculatrice, déterminer le résultat obtenu grâce à cet algorithme et interpréter la réponse dans le contexte de l'exercice.