11 Dans chacun des cas suivants, démontrer que F est une primitive de f.

a.
$$f(x) = 3x^2 - 6x + 2$$
 F

$$F(x) = x^3 - 3x^2 + 2x + 1$$

b.
$$f(x) = 5 - x$$

$$F(x) = 5x - \frac{1}{2}x^2$$

c.
$$f(x) = \frac{1}{2}x^2 - x^3 + \frac{1}{x}$$

a.
$$f(x) = 3x^2 - 6x + 2$$
 $F(x) = x^3 - 3x^2 + 2x + 1$
b. $f(x) = 5 - x$ $F(x) = 5x - \frac{1}{2}x^2$
c. $f(x) = \frac{1}{2}x^2 - x^3 + \frac{1}{x}$ $F(x) = \frac{1}{6}x^3 - \frac{x^4}{4} + \ln x$

d.
$$f(x) = (x-1)e^x$$

$$F(x) = (x-2)e^x$$

e.
$$f(x) = e^{1-x}$$

$$F(x) = -e^{1-x}$$

f.
$$f(x) = xe^{-x^2}$$

d.
$$f(x) = (x - 1)e^x$$
 $F(x) = (x - 2)e^x$
e. $f(x) = e^{1-x}$ $F(x) = -e^{1-x}$
f. $f(x) = xe^{-x^2}$ $F(x) = -\frac{1}{2}e^{-x^2}$

14 Déterminer une primitive des fonctions suivantes.

a.
$$f(x) = x^2 - \frac{1}{\sqrt{x}}$$

b.
$$f(x) = \frac{3}{2\sqrt{x}}$$

c.
$$f(x) = -\frac{1}{x^2} + 3$$

d.
$$f(x) = 2x + \frac{1}{x^2}$$

e.
$$f(x) = \frac{1}{x} - 1$$

f.
$$f(x) = \frac{3}{x} - \frac{2}{x^2}$$

g.
$$f(x) = \frac{1}{4x}$$

a.
$$f(x) = x^2 - \frac{1}{\sqrt{x}}$$
 b. $f(x) = \frac{3}{2\sqrt{x}}$ c. $f(x) = -\frac{1}{x^2} + 3$ d. $f(x) = 2x + \frac{1}{x^2}$ e. $f(x) = \frac{1}{x} - 1$ f. $f(x) = \frac{3}{x} - \frac{2}{x^2}$ g. $f(x) = \frac{1}{4x}$ h. $f(x) = \frac{3}{2x} - \frac{4}{3x^2}$

15 Déterminer une primitive des fonctions suivantes.

$$\overline{\mathbf{a}} \cdot f(x) = e^x + x$$

b.
$$f(x) = e^{-x}$$

c.
$$f(x) = 3e^{3x} +$$

d
$$f(x) = e^{-3x}$$

a.
$$f(x) = e^x + x$$

b. $f(x) = e^{-x}$
c. $f(x) = 3e^{3x} + 1$
d. $f(x) = e^{-3x}$
e. $f(x) = e^{2x-1}$
f. $f(x) = 2xe^{x^2}$

f.
$$f(x) = 2xe^x$$

g.
$$f(x) = 3x^2e^{x^3}$$

h.
$$f(x) = (2x+1)e^{x^2+x}$$

16 Déterminer la primitive des fonctions suivantes qui prend la valeur 1 en 0.

a.
$$f(x) = x + 4$$

b.
$$f(x) = 1 - x^2$$

d. $f(x) = e^x + 1$

$$c. f(x) = e^x$$

$$\mathbf{d} \cdot \mathbf{f}(\mathbf{x}) = \mathbf{a}^{X} + 1$$

17 On considère la fonction f définie sur]0; +∞[par $f(x) = x \ln x$.

Vérifier que la fonction F définie sur]0; +∞[par

$$F(x) = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$$

est une primitive de f.

2. En déduire la valeur exacte de l'aire comprise entre la courbe de f, l'axe des abscisses et les droites d'équation x = 1 et x = 2.